

Obstetric Sepsis

Jamie Morgan, MD Maternal-Fetal Medicine Associate Professor of OBGYN UT Southwestern Medical Center

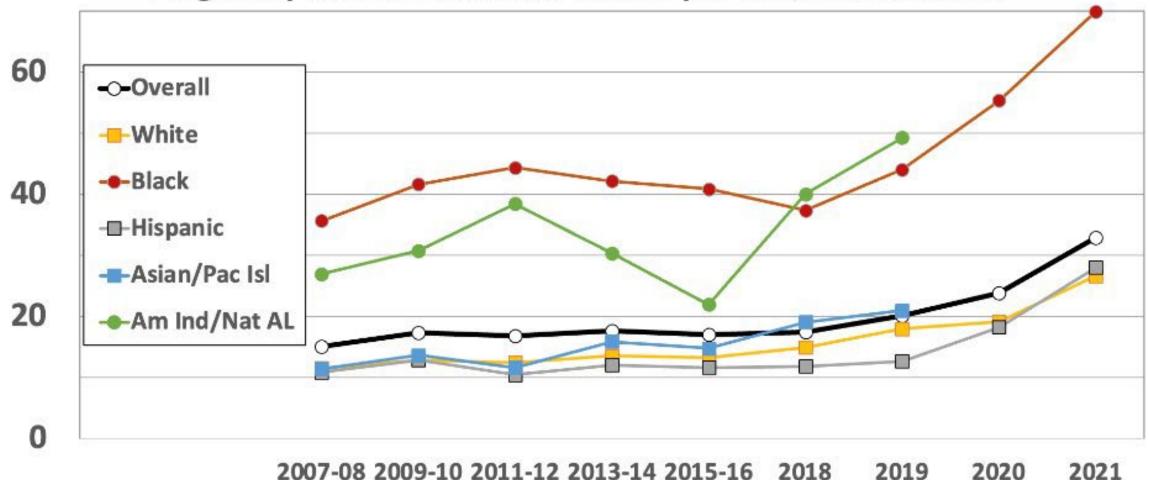
UTSouthwesternMedical Center

Conflicts of Interest

None to disclose

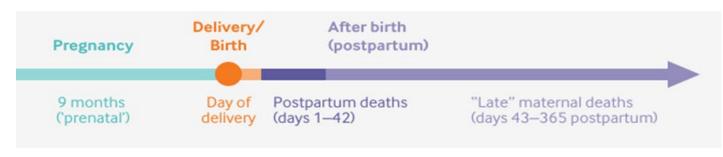
Learning Objectives

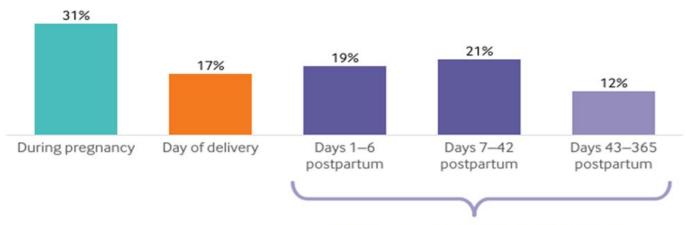
- Discuss the pathophysiology of obstetric sepsis including specific physiologic changes in pregnancy that contribute to delayed recognition and sepsis related morbidity/mortality
- 2) Compare and contrast sepsis screening systems and describe how they perform in pregnancy
- 3) Describe OB specific sepsis escalation and management considerations and provide examples for how OB-specific algorithms can be integrated into overall hospital-level sepsis care
- 4) Identify at least two strategies being utilized to improve sepsis outcomes in pregnant and postpartum patients



Level Setting:

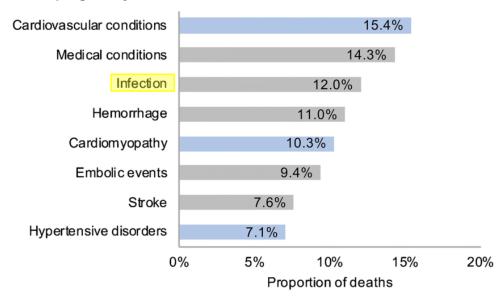
The Current State of Maternal Health & Sepsis Contributions to Maternal Morbidity & Mortality


Pregnancy-Related Maternal Deaths per 100,000 live births

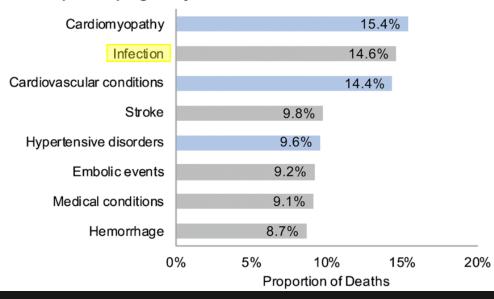


Plotted from data in: Peterson et al, MMWR 68: 762-765, 2019 Hoyert et al., NVSS, Health e-Stats, March 2023 Fleszar et al, JAMA 330: 52-61, 2023 (July 3) Graphic by Dr. Andy Combs (used with permission)

Timing & Causes of Pregnancy-Related Deaths

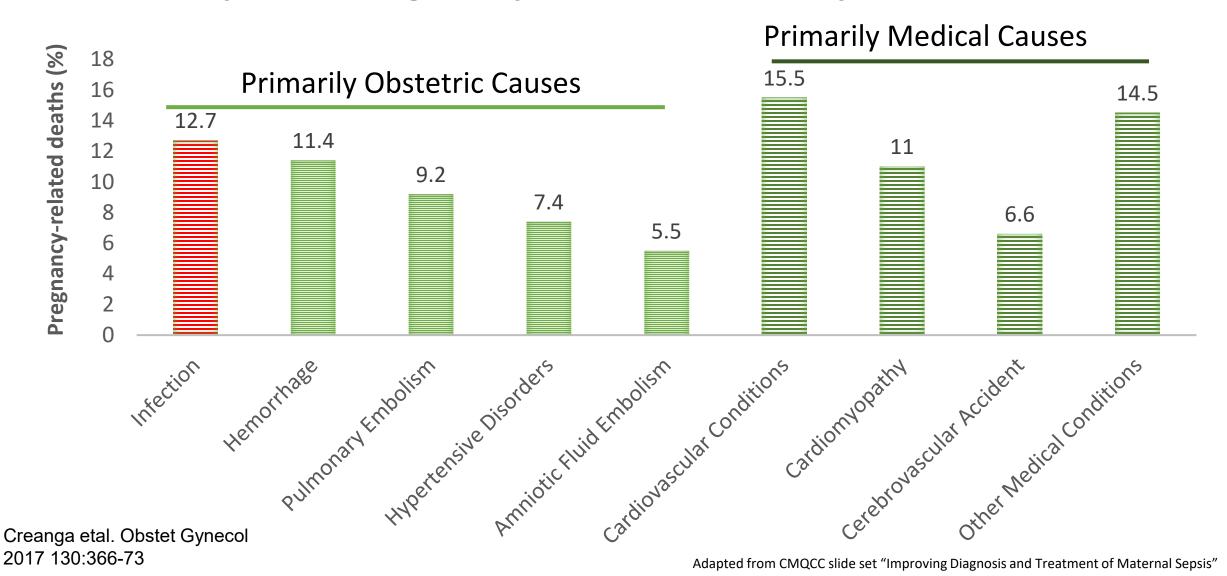


52% postpartum (after birth) deaths

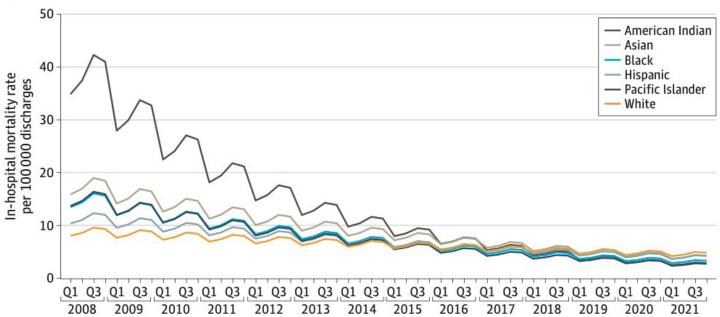

Left graphic: National Center for Health Statistics, National Statistics System, prepared by ABC

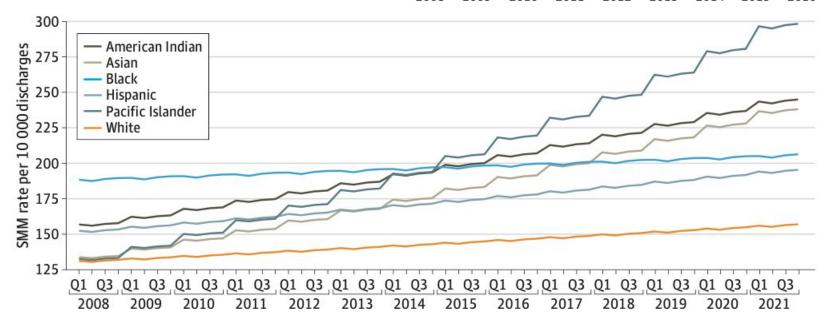
Right graphic: Fitzsimmons, et al. (2020). Differential Outcomes for African-American Women with Cardiovascular Complications of Pregnancy. Current Treatment Options in Cardiovascular Medicine. 22. 64. 10.1007/s11936-020-00863-5.

a All pregnancy-related deaths



b Postpartum pregnancy-related deaths




Cause-Specific Pregnancy-Related Mortality, US: 2011-2013

In-Hospital Maternal Mortality

Severe Maternal Morbidity

Data Source: Premier PINC AI Healthcare Database N = 11,628,438 (approx 20% of US births) Fink et al., JAMA Netw Open 6:e2317641, 2023 (June)

Maternal Sepsis Morbidity & Mortality

Sepsis occurs in about 0.04% of deliveries (~4 per 10k livebirths) and is a leading cause of maternal death

Despite a low frequency, the mortality of sepsis is high, ranging from 9-14%

Most cases (63%) of maternal death from sepsis are likely to have been preventable

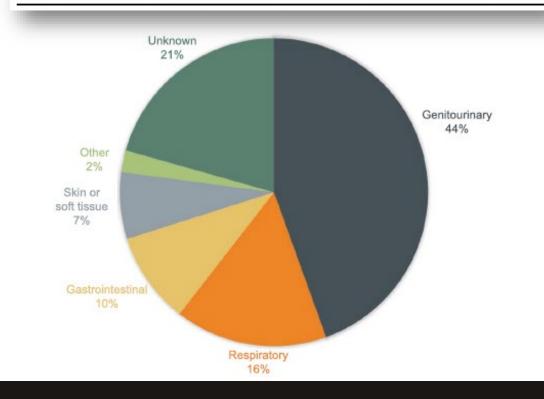
For each maternal death from sepsis, there are 50 women who experience life-threatening morbidity from

sepsis

Bauer et al. *Anesth Analg (*2013) Hensley et al. *JAMA* (2019) Kendle et al. *AJOG* (2019)

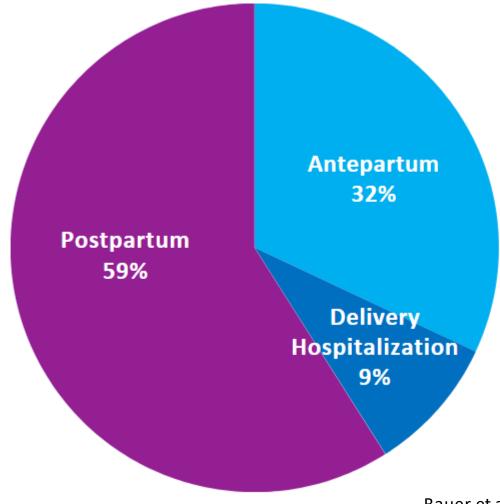
Risk Factors & Causes of Maternal Sepsis

Obstetric factors


- Amniocentesis, and other invasive intrauterine procedures
- Cervical suture
- Prolonged rupture of membranes
- Prolonged labour with multiple (>5) vaginal examinations
- Vaginal trauma
- Caesarean section
- Retained products of conception after miscarriage or delivery

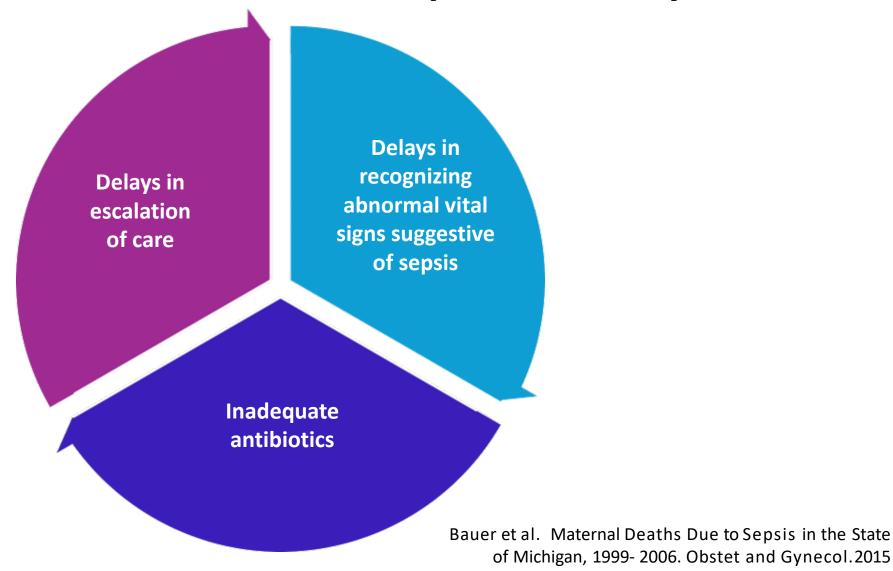
Patient factors

- Obesity
- Impaired glucose tolerance/diabetes
- Impaired immunity
- Anaemia
- Vaginal discharge
- History of pelvic infection
- History of Group B streptococcal infection


Lucas et al, Int J Obstet Anesth 2012 Shields et al, SMFM Consult Series "Maternal Sepsis" Hensley et al, JAMA 2019

Common sources of infection in sepsis					
Sources	Antepartum	Postpartum			
Obstetrical	Septic abortion	Endometritis			
	Chorioamnionitis	Wound infection			
Nonobstetrical	Urinary tract infection	Urinary tract infection			
	Pneumonia	Pneumonia			
	Appendicitis	Gastrointestinal			

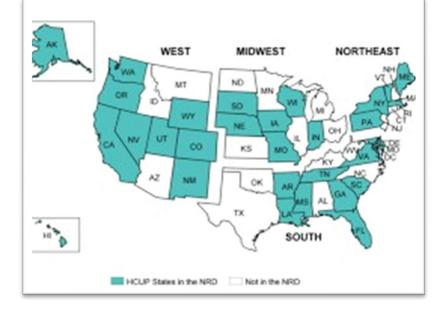
Temporal Relationship of Sepsis to Pregnancy Events



Bauer et al. Maternal Deaths Due to Sepsis in the State of Michigan, 1999- 2006. Obstet and Gynecol. 2015

Preventable Contributors to Sepsis Mortality

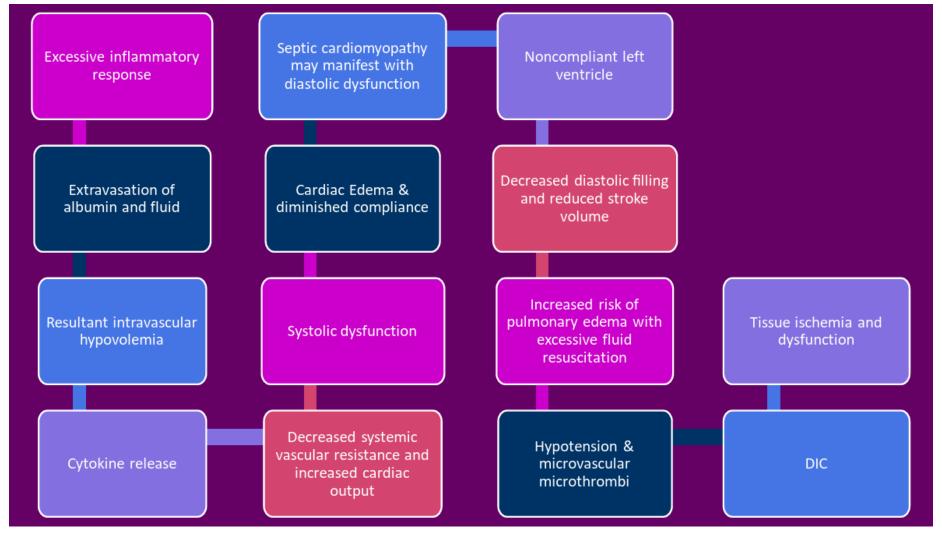
Michigan MMRC Data 1999-2000



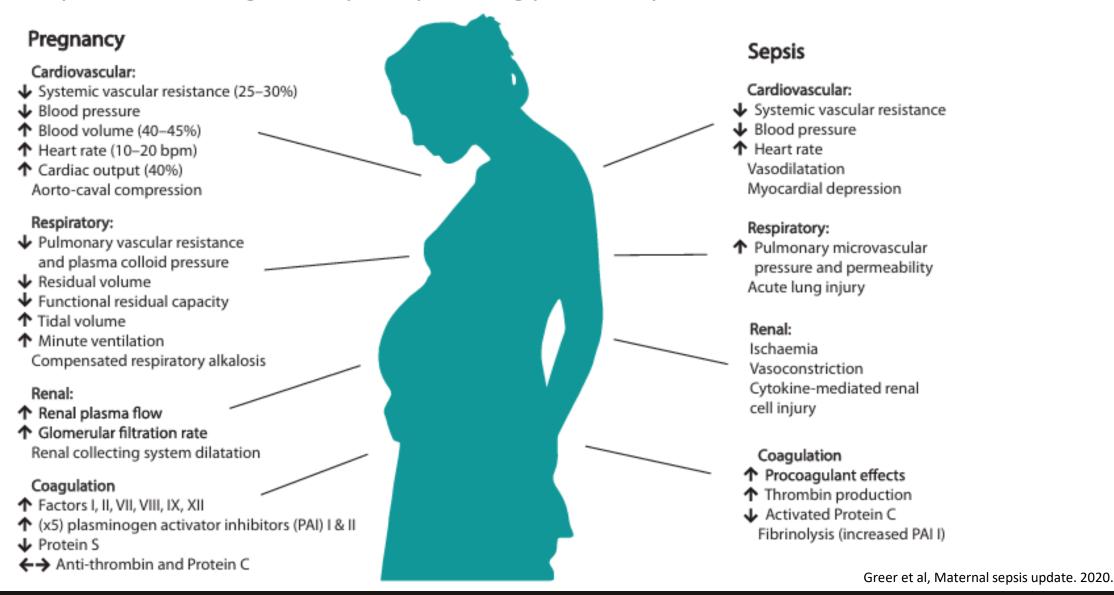
Pregnancy-Related Readmission National Sepsis Data

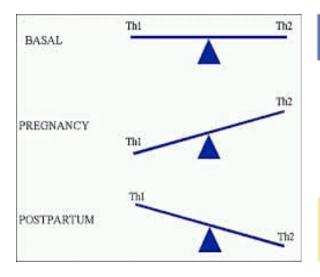
- National Readmissions Database from 2013-2016
 - 5,957,678 eligible cases
 - 2,905 (0.038%) cases of sepsis
 - 49% during delivery hospitalization
 - 50% after delivery discharge
 - Readmission occurred on average 13.6 days after discharge

- 17% during delivery hospitalization
- 38% after discharge

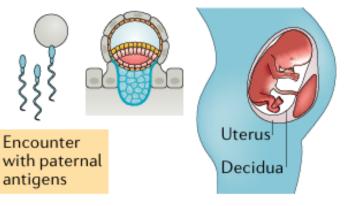

Hensley et al. Incidence of Maternal Sepsis and Sepsis-Related Maternal Deaths in the United States. JAMA 2019

Pathophysiology of Obstetric Sepsis: Adaptations that Predispose to Infection


Sepsis results from a dysregulated host response to infection resulting in organ damage


Shields et al, SMFM Consult Series "Maternal Sepsis"

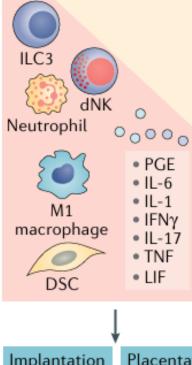
Impact of Pregnancy Physiology on Sepsis Presentation

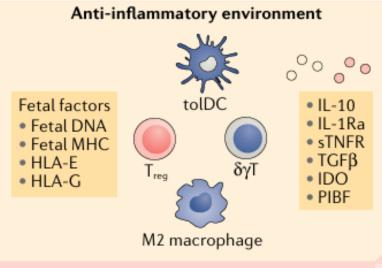


Early pregnancy

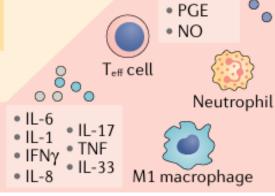
During pregnancy

Delivery phase


T_H17 cell

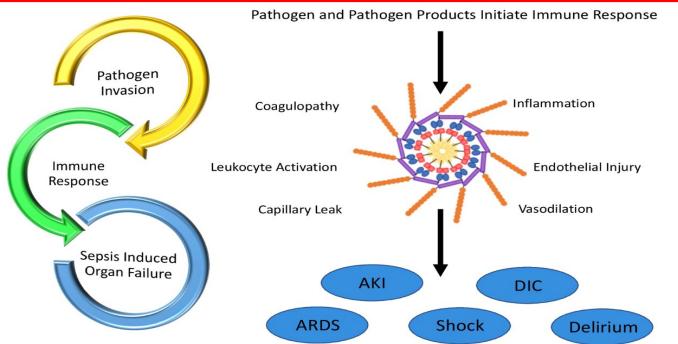

DAMPs

Immune Changes in **Pregnancy**


Increased Susceptibility to Infection

Forger et al , Nature Reviews 2022 https://www.drakibagreen.com/infertility/

Pro-inflammatory environment



Placentation Implantation

Fetal growth Tolerance

Parturition

Cumulative effect					
Cardiovascular	Respiratory	Renal	Coagulation		
Rapid haemodynamic collapse	 Susceptibility to pulmonary oedema Rapid decrease in oxygenation Adult respiratory distress syndrome Decreased ability to compensate for metabolic acidosis 	Acute kidney injury	 Increased microvascular thrombus formation Microcirculation dysregulation Tissue hypoperfusion End-organ dysfunction 		

Greer et al, Maternal sepsis update. 2020. https://ccforum.biomedcentral.com/articles /10.1186/s13054-023-04310-2

Maternal Sepsis Screening Systems

Obstetric Sepsis Definition

"A life-threatening condition defined as an organ dysfunction caused by an infection during pregnancy, childbirth, post-abortion or the postpartum period (up to 42 days)"

	Sepsis I-1991	Sepsis II-2001	Sepsis III-2016
Sepsis	Documented infection with 2 or more SIRS criteria	Unchanged	Life-threatening organ dysfunction caused by a dysregulated host response to infection
Severe sepsis	Sepsis associated with organ dysfunction, hypoperfusion, or hypotension	Unchanged	Abandoned
Septic shock	Sepsis with hypotension, despite adequate fluid resuscitation	Unchanged	Sepsis accompanied by profound circulatory and cellular or metabolic abnormalities related to substantially increased mortality

Sepsis Screening Systems

HR≥120
BP ≤90
RR ≥30
Oxygen Saturation <95%
Oliguria ≤35 cc/hr
Maternal symptoms

Maternal
Early Warning
Systems
(MEWS)

Systemic Inflammatory Response (SIRS) Temp >38 or <36 HR >90 RR>20 CO2 <32

Temp <36 or ≥38

HR≥110

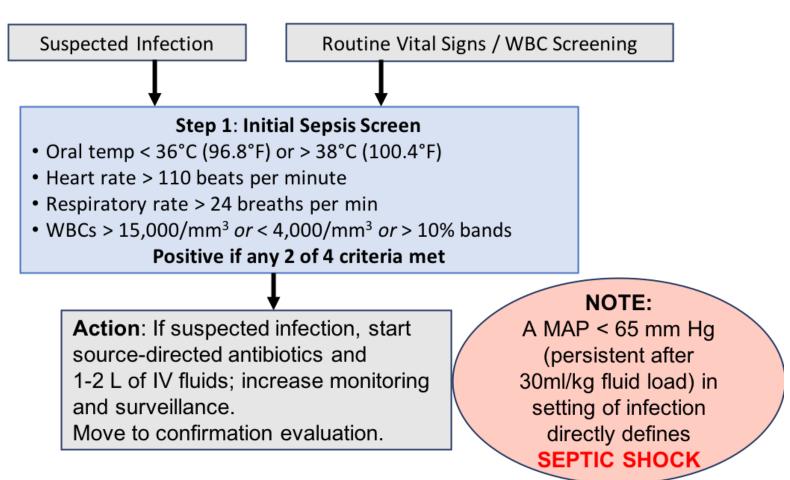
RR >24

WBC >15K or <4K or 10%

bands

Positive if any 2 criteria

CMQCC 2-step algorithm Sequential Organ Failure Assessment Score (SOFA)


Organ System, Measurement		50000	9	Ota Score	914
		1	2		4
Paraprotion Paraprotion revenue	Nortusi	-1400	<800	(Afthregistery support)	(150 (with respiratory region!)
Congulation Functors sid?/men*	Normal	+150	+100	-50	<20
Silver Bilination, regist. (proof/)	Normal	Do-932 77-719	(89-231) 3 9-0-9	(100 504) 89-113	(<386) +LEB
Cardiovascular Reputariosis	Normal	MAY-70	Departing of or debutymine (any debutymine)	Departing 45 or epissphine (0.1 or noreplasphine (0.1)	Dopumine <55 or opinightine =0.1 o nonepinephrine =0.
Control Monasso System Glasgow Come Score	Normal	15-14	30-12	**	
Areas Creativine, ergist, jurnistiff or Universalized	Normal	13-L9 (310-170)	2.0-0.4 (1.73-299)	33-4.9 (900-445) or c500 res/day	16.0 (1441) or (208 ms/day

California Maternal Quality Care Collaborative (CMQCC) Maternal Sepsis Two-Step Approach

GOAL = Reduce false positives (avoid 'alarm fatigue') and prevent false negatives (avoid missing cases)

Gibbs R, et al. Improving Diagnosis and Treatment of Maternal Sepsis: A Quality Improvement Toolkit.

STEP #2

Step 2: Confirmation of Sepsis Evaluation

- Respiratory: New need for mechanical ventilation or PaO2/FiO2 < 300
- Coagulation: Platelets < 100 x 10⁹/L or INR > 1.5 or PTT > 60 secs
- Liver: Bilirubin > 2 mg/dL

All Criteria

NEGATIVE

- Cardiovascular: SBP < 85 mm Hg or MAP < 65 mm Hg or > 40 mm Hg decrease in SBP (after fluids)
- Renal: Creatinine ≥ 1.2 mg/dL or doubling of creatinine or urine output < 0.5 ml/kg/hr x 2 hrs
- · Mental Status: Agitated, confused, or unresponsive
- Lactic Acid: > 2 mmol/L in absence of labor

Confirmed if 1 or more criteria met

Action: This group remains at high risk for sepsis and requires close supervision and reevaluation.

Elevated lactate ONLY in Labor

MAP < 65 mm Hg (with confirmation) defines

SEPTIC SHOCK

≥ 1 Criterion

POSITIVE

defines

SEPSIS

Action: Start sourcedirected antibiotics, broad spectrum antibiotics if source unclear; increase fluids to 30 ml/kg within 3 hours; collect blood cultures if not already obtained, maintain close surveillance, e.g. RRT, and repeat lactate. Escalate care as needed.

Action: At a minimum, maintain close surveillance; consider additional fluids to reduce lactic acid level; repeat lactate. (See Discussion of the Role of Lactic Acid in the Peripartum Period In the toolkit for more detail.)

Action: As above for Sepsis, admit to ICU. If hypotension persists after 30 ml/kg fluid load, assess hemodynamic status and consider vasopressor use.

Gibbs R, et al. Improving Diagnosis and Treatment of Maternal Sepsis: A Quality Improvement Toolkit.

Step 2: Criteria for End-Organ Injury

Measure of End	Criteria
Organ Injury	Positive if one (1) or more criteria are met
Respiratory	Acute respiratory failure as evidenced by acute need for invasive or non-invasive
function*	mechanical ventilation, OR
	$\bullet PaO_2/FiO_2 < 300$
Coagulation status	● Platelets < 100 x 10 ⁹ /L, OR
	● International Normalized Ratio (INR) > 1.5, OR
	Partial Thromboplastin Time (PTT) > 60 seconds
Liver function	Bilirubin > 2 mg/dL
Cardiovascular	Persistent hypotension after fluid administration:
function	○ SBP < 85 mm Hg, OR
	○ MAP < 65 mm Hg, OR
	○ > 40 mm Hg decrease in SBP
Renal function	Creatinine > 1.2mg/dL, OR
	Doubling of serum creatinine, OR
	Urine output less 0.5 mL/kg/hour (for 2 hours)
Mental status	Agitation, confusion, or unresponsiveness
assessment	
Lactic acid	> 2 mmol/Lin absence of labor
	(Lactic acid not used for diagnosis in labor, but remains important for treatment.)

Gibbs R, et al. Improving Diagnosis and Treatment of Maternal Sepsis: A Quality Improvement Toolkit.

Performance of Two-Step System for Diagnosis of Maternal Sepsis

(data extracted from clinical practice data sets, not formal research studies)

	OB Vital Signs Screen		OB Vital Signs Screen Sepsis (End Organ Injury)			
Source	Population Screened	Screen Positive	Total with End Organ injury	Among Screen Positive (Sens)	Not Among Screen Positive (Spec)	
Combined Systems*	14,752	199 (1.3%)	33 (16.6% of screen positives) (0.22% of all screened)	32 (97%)	1 (3%)	

Notes: (1) Initial screen positive rate is 1.3%

(2) Overall performance of the Two-Step System as shown above gives an approximate sensitivity of 97% and an approximate specificity of 99%

Data from Dignity Health and Sutter Health Slide taken from CMQCC Improving Diagnosis and Treatment of Maternal Sepsis slide set

Standardized Obstetric Sepsis Screening Tools Comparison

Performance of SIRS, modified MEWS and qSOFA criteria for diagnosing sepsis

Criteria	Sensitivity	Specificity
SIRS (any two): T < 36°C or > 38°C; WBC < 4 or > 12; HR > 90; RR > 20	0.93	0.63
Modified MEWS (any one): SBC < 90 mm Hg; HR > 120; RR > 30; neurological changes	0.82	0.87
qSOFA (any two): RR > 22; SBC < 100 mm Hg: neurological changes; RR > 22 and SBC < 100 mm HG	0.50	0.95

Gibbs R, et al. Improving Diagnosis and Treatment of Maternal Sepsis: A Quality Improvement Toolkit. Stanford, CA: California Maternal Quality Care Collaborative.

Obstetric Sepsis Screening Tool Performance

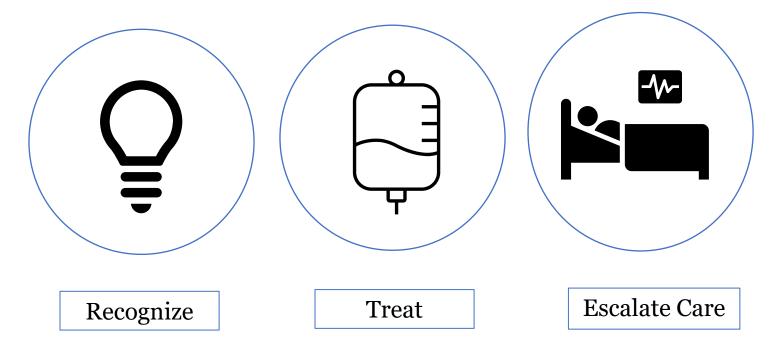
COHORT 1: Cases excluding Chorioamnionitis and Endometritis

	Sepsis by Diagnosis Codes N=647			-	with End Orga agnosis Codes	
Screening	Screen	Sensitivity	C statistic	Screen	Sensitivity	C statistic
System	Positive	(95% CI)	(95% CI)	Positive	(95% CI)	(95% CI)
	Rate			Rate		
CMQCC	6.9%	90.6%	0.92	9.2%	96.9%	0.94
		(88.1-92.7)	(0.91, 0.93)		(93.8-98.8)	(0.92, 0.95)
SIRS	21.3%	96.9%	0.88	23.9%	98.7%	0.87
8		95.3-98.1	(0.87, 0.89)	80	96.2-99.7	(0.86, 0.89)
MEWC	38.3%	96.9%	0.79	43.9%	98.2%	0.77
4	6	95.3-98.1	(0.78, 0.80)	84	95.6-99.5	(0.75, 0.79)
UKOSS	9.6%	92.0%	0.91	11.6%	96.1%	0.92
	10.00	89.6-93.9	(0.90, 0.92)	To 1 And File	92.6-98.2	(0.91, 0.94)
MEWT (overall)	15.8%	79.9%	0.82	19.8%	90.8%	0.85
		76.6-82.9	(0.80, 0.84)		86.3-94.2	(0.83, 0.88)

Main et al. Obstet and Gynecol 2024

Obstetric Sepsis Screening Tool Performance

COHORT 2: Chorioamnionitis and Endometritis Cases						
	Sepsis by Diagnosis Codes N=1049			Sepsis with End Organ Injury by Diagnosis Codes N=238		
Screening	Screen	Sensitivity	C statistic	Screen	Sensitivity	C statistic
System	Positive	% (95%CI)	(95%CI)	Positive	% (95%CI)	(95%CI)
	Rate			Rate		420
CMQCC	60.2%	93.6%	0.67	60.2%	93.7%	0.67
		92.0-95.0	(0.66, 0.68)		89.8-96.4	(0.65, 0.68)
SIRS	86.6%	99.4%	0.56	86.6%	99.2%	0.56
	Tecorie I representa	98.8-99.8	(0.56, 0.57)	323044440000000000	97.0-99.9	(0.56, 0.57)
MEWC	92.3%	97.7%	0.53	92.3%	97.9%	0.53
		96.6-98.5	(0.52, 0.53)	500500000000000000000000000000000000000	95.2-99.3	(0.52, 0.54)
UKOSS	67.5%	95.2%	0.64	67.5%	95.0%	0.64
		93.2-96.0	(0.63, 0.65)	3.0	91.4-97.4	(0.63, 0.65)
MEWT (Overall)	45.7%	78.5%	0.66	45.7%	87.4%	0.71
		75.8-80.9	(0.65, 0.68)	t c	82.5-91.3	(0.69, 0.73)


Main et al. Obstet and Gynecol 2024

OB Specific Sepsis Escalation & Management Considerations

Tenants of Sepsis Care NON-PREGNANT = PREGNANT

Measure Lactate Level

Obtain Blood Cultures

Antibiotic Therapy

Sepsis Bundle

Fluid Resuscitation

Vasopressor Therapy

Graphic from Castrodad-Rodríguez CA et al, Acad Pathol 2021

Management Principles for Obstetric Sepsis

Recognition is key

- Pearl 1. Always maintain a high index of suspicion for sepsis.
- Pearl 2. Implement a rapid bedside tool for detection of maternal deterioration

Move fast during the golden hour to save lives

- Pearl 3. Implement sepsis bundles to facilitate rapid escalation of care.
- Pearl 4. Laboratory and radiologic studies are keys to search for etiology and source control.
- Pearl 5. Know your "bugs," their likely origin, and that group A streptococcus can kill quickly.
- Pearl 6. Choose antimicrobials tailored to the most likely diagnosis.
- Pearl 7. Fluid resuscitation should be initiated rapidly for patients with a blood lactate greater than 4 mmol/L or mean arterial pressure less than 65 mm Hg.

Beyond the golden hour

- Pearl 8. Escalation of care is critical to survival.
- Pearl 9. Once the patient is stabilized, get to the source of the problem.
- Pearl 10. Anticipate and prevent adverse pregnancy outcomes.

Rapid Assessment of Screen Positive Patients

Monitoring	Time Frame	Additional Considerations
Fetal monitoring	Continuous	Antepartum/intrapartum
Pulse oximetry	Continuous	Until vital signs are normalized
Blood pressure (MAP)	Q 30 minutes from 'Time Zero'	Until lactate less than 2.0 mmol/L, then Q2 h for non-laboring patients*
Temperature	Q 30 minutes from 'Time Zero'	Until lactate less than 2.0 mmol/L, then Q2 h for non-laboring patients*
Urine output	Q 1 hour from 'Time Zero'	Foley catheter with urometer
Mental status	Continuous	Note agitation, confusion, or unresponsiveness

Time Zero = Positive Initial Sepsis Screen

Jones AE, Acad Emerg Med 2013 Table from CMQCC Sepsis Toolkit

Early Antibiotics in Maternal Sepsis

Early source directed antibiotics

If unclear source, broad-spectrum antibiotics recommended

Antibiotics given within 1 hour

8% mortality

Antibiotics given >1 hour

20% mortality

Bauer ME et al. Anesth Analg 2019

Common Obstetric Regimens

Chorioamnionitis	Ampicillin plus gentamicin. ^c Add anaerobic coverage with clindamycin or metronidazole if cesarean delivery required.
Endomyometritis	Ampicillin, gentamicin, and metronidazole (or clindamycin)
	Alternatively may use cefotaxime or ceftriaxone plus metronidazole ^d
Urinary tract infections	Gentamicin with ampicillin

Group A Streptococcus (GAS)

Clinical criteria for strep toxic shock syndrome (STSS)

- Hypotension
- Multiorgan involvement characterized by two or more of:
 - Renal impairment
 - Coagulopathy
 - Liver dysfunction
 - Acute respiratory distress syndrome
 - Erythematous macular rash (may desquamate)
 - Soft tissue necrosis (e.g., necrotizing fasciitis, myositis, or gangrene)

- Likely the organism that is most commonly responsible for fatal maternal sepsis
- GAS can cause a range of infections, including endomyometritis, necrotizing fasciitis, and Streptococcal toxic shock syndrome (STSS)
- Common organism associated with retained products of conception underscoring the critical need to evacuate the uterus for source control
- Use clindamycin with ß-lactams to inhibit exotoxin production

CMQCC Sepsis Toolkit CMQCC "Update on Antibiotics for Chorioamnionitis and Obstetric Sepsis" slide set

OB-Specific Clinical Caveats

- Ideal body weight (not actual body weight) should be used
- A more restrictive approach may be needed due to increased risk of pulmonary edema in pregnancy
- Balanced crystalloid solutions (LR) over chloride-rich solutions during resuscitation should be prioritized
- No evidence that albumin improves outcomes compared to crystalloids and is more costly

Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021

 For patients with sepsis induced hypoperfusion or septic shock we **suggest** that at least 30 mL/kg of IV crystalloid fluid should be given within the first 3 hours of resuscitation.

Weak recommendation, low-quality evidence.

 For adults with sepsis or septic shock, we suggest guiding resuscitation to decrease serum lactate in patients with elevated lactate level, over not using serum lactate.

Weak recommendation, low-quality evidence.

Fluid Resuscitation

Evans et al, Critical Care Med, 2021 Behnia et al, Semin Perinatol 2024

Role of Lactate

Gibbs R, et al. Improving Diagnosis and Treatment of Maternal Sepsis: A Quality Improvement Toolkit

Pregnancy complicates lactic acid interpretation

Labor can increase lactic acid in the absence of serious infection due anaerobic metabolism during prolonged physical exertion

In non-laboring patients, lactic acid value thresholds can be used with expected values <2 mmol/L

In labor OR within 1 hour of delivery, abnormal lactate threshold increases to >4mmol/L

Drawing Cultures

Society of Critical Care Medicine recommends cultures be obtained <u>PRIOR</u> to starting antimicrobial therapy in patients with suspected sepsis and septic shock if it does not result in substantial delay in the start of antimicrobials

For chorioamnionitis/intraamniotic infection and endometritis, lower genital tract cultures are rarely performed because they may reflect primarily contaminating organisms

Patients initially diagnosed with chorioamnionitis/endometritis generally have negative blood cultures or a positive culture is reported after a recovered patient has been discharged

If patient show signs of end-organ injury or septic shock, blood cultures should be obtained if not already done, even if antibiotics have been initiated

CMQCC Sepsis Toolkit Dellinger, Mitchell, Rhodes, et al. Int Care Med 2013

Escalation of Care

Criteria Considerations

- Hypotension (MAP < 65mm Hg) despite fluid resuscitation or need for administration of vasopressors
- Persistent hypoxia (SpO₂ < 92% on room air)
- Altered mental status (combativeness, confusion, disorientation)

Decision for transfer should be made in concert with multidisciplinary team (OB/MFM, ICU, nursing, anesthesia, RRT)

Transport of a critically ill mother should NOT be delayed due to inability to monitor the fetus

STABILIZING THE MOTHER WILL OFTEN STABILIZE THE FETUS

Gibbs R, et al. Improving Diagnosis and Treatment of Maternal Sepsis: A Quality Improvement Toolkit. Stanford, CA: California Maternal Quality Care Collaborative.

Additional Considerations for Pregnant Women with Sepsis

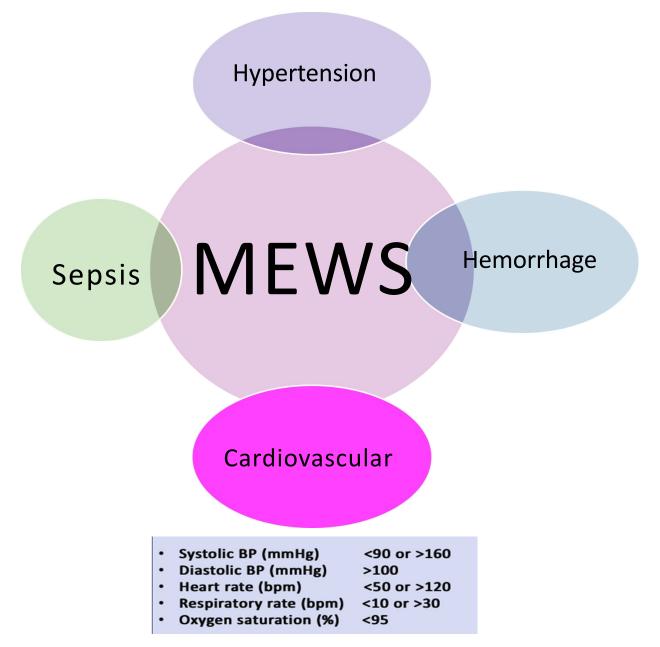
Vasopressors	Norepinephrine is the pressor of choice in pregnancy and used if MAP <65 mm Hg and if unresponsive to intravenous fluids
Inotrope	Dobutamine is recommended for myocardial dysfunction or hypoperfusion despite intravenous fluids and vasopressors as it increases cardiac output.
Glucose Control	Avoid hyperglycemia >180 mg
Maternal Temperature Control	Reduce fetal oxygen consumption and fetal tachycardia using acetaminophen and cooling blankets
Fetal lung maturity	Consider steroids for fetal lung maturity if 23-36* weeks of pregnancy
DVT prevention	Pharmacologic VTE prophylaxis and mechanical prophylaxis whenever possible

Gymafi-Bannerman et al, NEJM 2016

Strategies & Resources to Improve Sepsis Outcomes in Pregnant and Postpartum patients

CMQCC Maternal Sepsis Evaluation Flow Chart Suspected Infection Routine Vital Signs / WBC Screening Step 1: Initial Sepsis Screen Oral temp < 36°C (96.8°F) or > 38°C (100.4°F) • Heart rate > 110 beats per minute • Respiratory rate > 24 breaths per min • WBCs > 15,000/mm³ or < 4,000/mm³ or > 10% bands Positive if any 2 of 4 criteria met NOTE: Action: If suspected infection, start A MAP < 65 mm Hg source-directed antibiotics and (persistent after 1-2 L of IV fluids; increase 30ml/kg fluid load) in monitoring and surveillance. setting of infection Move to confirmation evaluation. directly defines SEPTIC SHOCK Step 2: Confirmation of Sepsis Evaluation • Respiratory: New need for mechanical ventilation or PaO2/FiO2 < 300 Coagulation: Platelets < 100 x 10⁹/L or INR > 1.5 or PTT > 60 secs Liver: Bilirubin > 2 mg/dL • Cardiovascular: SBP < 85 mm Hg or MAP < 65 mm Hg or > 40 mm Hg decrease in SBP (after fluids) • Renal: Creatinine ≥ 1.2 mg/dL or doubling of creatinine or urine output < 0.5 ml/kg/hr x 2 hrs Mental Status: Agitated, confused, or unresponsive • Lactic Acid: > 2 mmol/L in absence of labor Confirmed if 1 or more criteria met Action: Start sourcedirected antibiotics. All Criteria ≥1 Criterion broad spectrum NEGATIVE POSITIVE antibiotics if source defines SEPSIS unclear; increase fluids Action: This group remains at high risk to 30 ml/kg within 3 for sepsis and requires hours; collect blood close supervision and cultures if not already reevaluation. obtained, maintain close Elevated surveillance, e.g. RRT. MAP < 65 mm Hg lactate ONLY and repeat lactate. (with confirmation) in Labor Escalate care as needed. defines Action: At a minimum, maintain close SEPTIC SHOCK surveillance; consider additional fluids to reduce Action: As above for Sepsis, admit to ICU. If lactic acid level; repeat lactate. (See Discussion hypotension persists after 30 ml/kg fluid load, of the Role of Lactic Acid in the Peripartum assess hemodynamic status and consider Period In the toolkit for more detail.) vasopressor use.

#1 Implement <u>Pregnancy-Specific</u> Rapid Bedside Assessment Tools


Avoid non-pregnant adult sepsis screening & assessment tools for obstetric patients

Although a two-step obstetric sepsis screening algorithm show increased sensitivity/specificity, consistent application is more important than the specific screen utilized

Build on any OB-specific assessment and screening tools already being successfully used

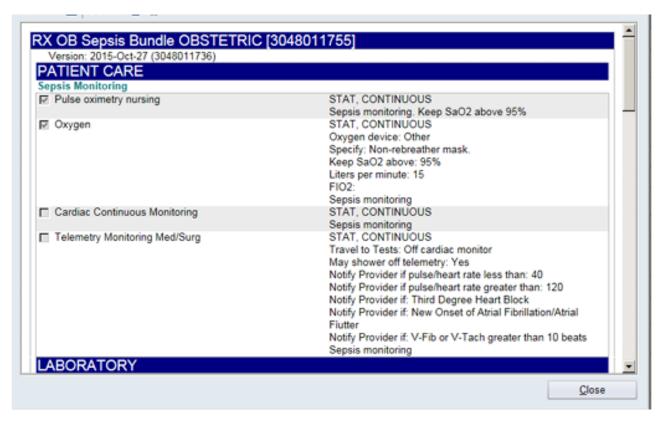
Consider integrated screening for other common obstetric morbidities that also contribute significantly to morbidity/mortality

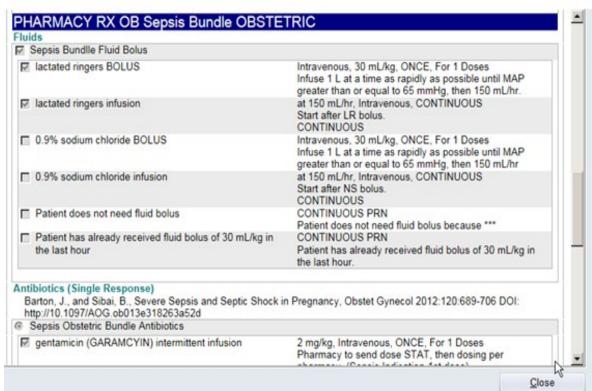
#2 Integrate OB Sepsis with Overall Hospital Sepsis Work

SEP-1 Specific	CMQCC Obstetric Serious Infection Evaluation Flow Chart	
Non-Pregnant Patients*	Pregnant 20 weeks through Day 3 Post-delivery Patients	Pregnant 20 weeks through Day 3 Post-delivery Patients
Oral Temperature > 38.3C or < 36.0C	Oral Temperature > 38.0C or < 36.0C	Oral Temperature > 38.0C or < 36.0C
Heart rate: > 90 per minute	Heart rate: > 110 per minute	Heart rate: > 110 per minute
Respiratory rate: > 20 per minute	Respiratory rate: > 24 per minute	Respiratory rate: > 24 per minute
WBC > 12,000 or < 4,000 or > 10% bands	WBC > 15,000 or < 4,000 or > 10% bands	WBC >1 5,000 or < 4,000 or > 10% bands

^{*}Includes pregnant patients <20 weeks and after 3 days post-delivery

Improves quality reporting alignment, particularly to CMS SEP-1 measure


Facilitates critical interdisciplinary collaboration, education and training with other services and units (ICU, ED, pharmacy, etc.)

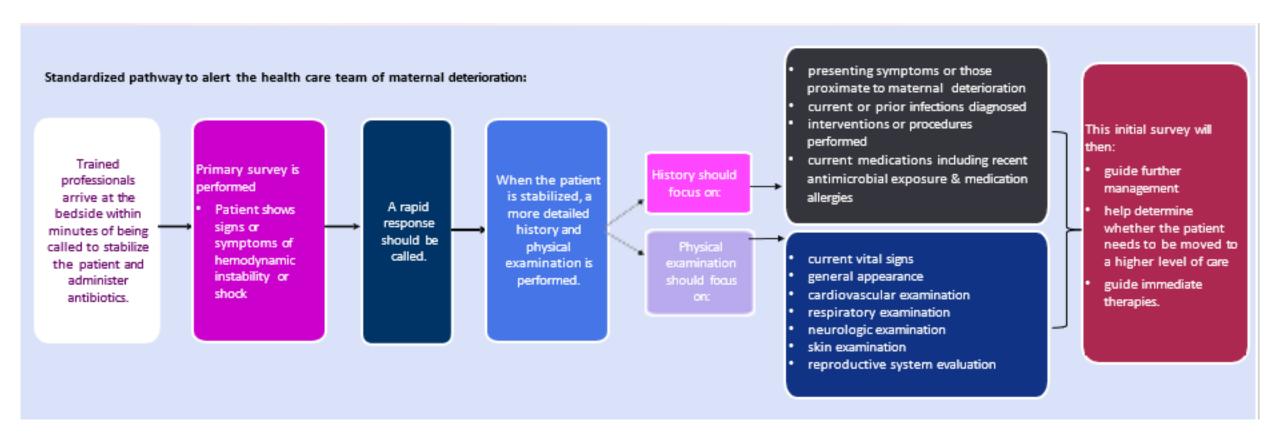


#3 Develop System-Based Solutions

Utilize standard obstetric-specific or obstetric-tailored order sets

Example order sets from University of MN Health

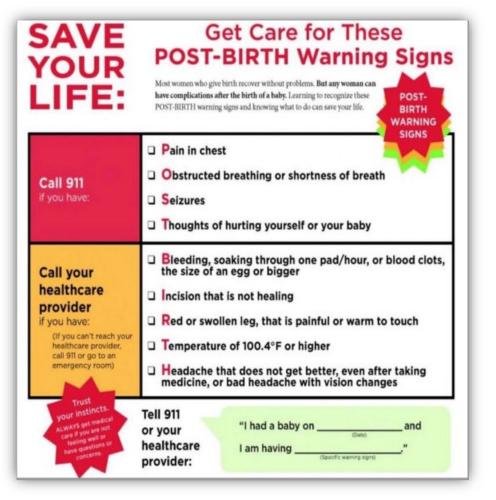
Aminoglycoside "Grab-n-Go" Bags


- Gentamicin (for cesarean prophylaxis)
 - □ The optimal doses for the most common patient weights were calculated based on two weight stratified categories (<120 kg and ≥120 kg) to make approximately 2 mg/kg dosing
 - □ Premixed 120 mg bags are stored refrigerated on the Labor unit
 - □ Patients with weights <120 kg receive 240 mg (2 bags), patients with weights \geq 120 kg receive 360 mg (3 bags).

Automate dispensing or expedite availability of the most common antibiotics used in an obstetric population

Example from Lucille Packard/Stanford

Codify obstetric sepsis escalation criteria and process



Shields et al, Obstet Gynecol 2021 Graphic from Michelle Flanagan RN, Maternal Sepsis slide set

#4 Integrate standard OB patient/provider education & support

Provide ALL patients, family and providers education on maternal early maternal warning signs

https://www.awhonn.org/education/post-birth-warning-signs-education-program/https://saferbirth.org/aim-resources/aim-cornerstones/urgent-maternal-warning-signs-2/

Tailor education, guidance, follow-up and support for post-sepsis OB patients

Guide for Post-Discharge Care After a Severe Maternal Event

Follow-Up Visits Arranged

- ☐ Follow up within 1-2 weeks of hospital discharge with obstetric care provider (OB)
- ☐ Identify key contact for immediate care and support as needed
- ☐ Arrange follow-up with primary care provider (PCP) or specialist(s) as appropriate
 - Many patients will need ongoing care up to 1 year to assess on going needs (especially mental health)
- ☐ Send Discharge Summary/Summary of Hospital Course to OB, PCP, and specialists
- ☐ Give Summary of Hospital Course to patient (see CMQCC Sepsis Toolkit for example)

Referrals (in-hospital or as outpatients)

- ☐ All patients with a Severe Maternal Event should have a referral to postpartum support group(s), either general or diagnosis specific (see resource list)
- ☐ Social Work—Medicaid or disability enrollment and transportation support as needed
- ☐ Lactation Consult—For support or suppression after major maternal illness or loss
- □ All patients with <u>critical illness/ICU admission</u> (for example: intubated, experiencing weakness) should have the following outpatient referrals placed on discharge¹
 - Occupational Therapy and Physical Therapy
 - Speech/Swallow evaluation (usually done post-extubation refer if ongoing difficulties)

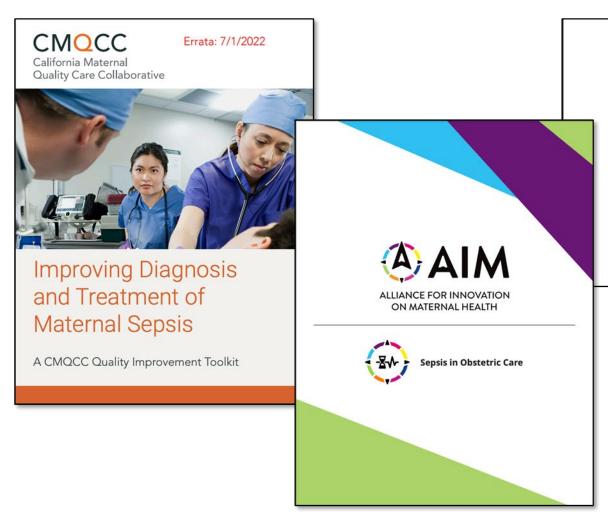
Discharge Planning: Post Sepsis Syndrome—What Survivors Need to Know

What is sepsis? Sepsis is a complication caused by the body's overwhelming and life-threatening response to an infection, which can lead to tissue damage, organ failure, and death.

How will I feel when I get home?1,2

You have been seriously ill, and your body and mind need time to get better. You may experience the following physical symptoms upon returning home:

- Weakness and fatigue
- Breathlessness
- Body pains or aches
- Difficulty moving around
- Difficulty sleeping
- Weight loss, lack of appetite, food not tasting normal
- Dry and itchy skin that may peel
- Brittle nails and hair
- Unsure of yourself
- Not caring about your appearance


- Wanting to be alone, avoiding friends and family
- Flashbacks, bad memories
- Confusing reality (e.g., not sure what is real and what isn't)
- Feeling anxious, more worried than usual
- Poor concentration
- Depressed, angry, unmotivated
- Frustration at not being able to do everyday tasks

CMQCC Maternal Sepsis toolkit

https://hsag.com/contentassets/d95e7dbd3c9a44d886c1af64adf1156c/sepsisdischargeplanptflyer6508.pdf

Obstetric Sepsis Quality Improvement Resources

Consensus Statement

OPEN

Alliance for Innovation on Maternal Health

Consensus Bundle on Sepsis in Obstetric Care

Melissa E. Bauer, DO, Catherine Albright, MD, MS, Malavika Prabhu, MD, R. Phillips Heine, MD, Chelsea Lennox, MPH, Christie Allen, MSN, RN, Carol Burke, MSN, APRN/CNS, April Chavez, MA, Brenna L. Hughes, MD, MSc, Susan Kendig, MSN, JD, Maile Le Boeuf, BA, Elliott Main, MD, Tiffany Messerall, DNP, WHNP-BC, Luis D. Pacheco, MD, Laura Riley, MD, Rachel Solnick, MD, MSc, Andrew Youmans, MSN, CNM, and Ronald Gibbs, MD

Obstet Gynecol. 2023 Sep 1;142(3):481-492.

Ongoing OB Sepsis QI Work:

TexasAIM Sepsis in Obstetric Care Collaborative

Obstetric
Hemorrhage
(completed 2020)

Severe
Hypertension in
Pregnancy
(completed 2024)

Obstetric Care for Women with Opioid and other Substance Use Disorders (completed 2024)

Readiness

Recognition and Prevention

Response

Reporting and Systems Learning

Respectful,
Supportive,
Patient Centered
Care

Improvement Readiness and Sustainability

Sepsis in Obstetric Care

Mental Health and Substance Use Disorders

Cardiac Conditions in Obstetric Care

Texas AIM: tinyurl.com/dshs-texasaim

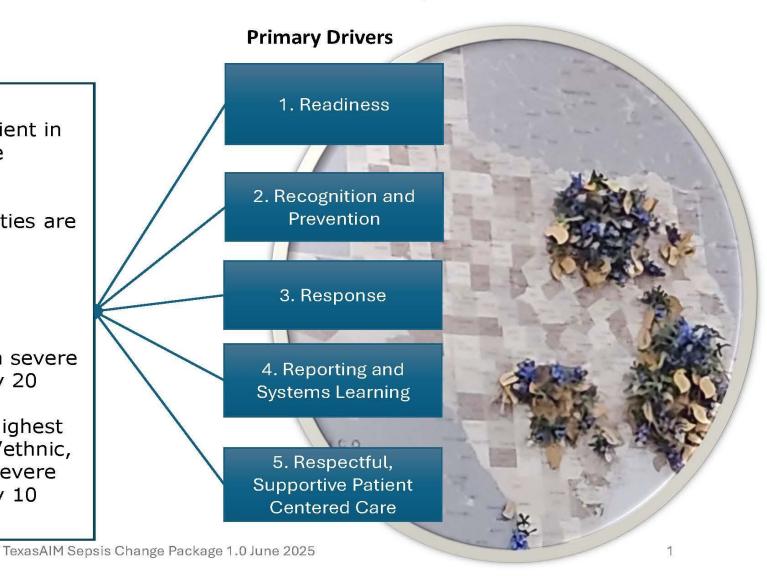
AIM: saferbirth.org

IHI Breakthrough Series Model Plan Study Plan Enroll **Action Period 3 Topic Selection Participants Sustainability** Study **Assess Synthesize** Study **Action Period 2 Disseminate** Prework **Action Period 1** Learning Refine **Session 3** Recruit Framework and Faculty Learning Changes **Session 2 Support** Learning Email ● Online Collaboration ● **Session 1** Phone Conferences ● Team Reports ● **Assessments**

Sepsis in Obstetric Care Learning Collaborative

TexasAIM Sepsis Collaborative Road Map 2025-2026

Aim


Global Aim:

No pregnant or postpartum patient in Texas is harmed by preventable infection complications; and •Sepsis- and sepsis-associated morbidity and morbidity disparities are eliminated.

Collaborative Aim & Goals:

By August 2027:

- Reduce sepsis and sepsis with severe maternal comorbidity rates by 20 percent from baseline; and
- Reduce differences between highest and lowest geographic, racial/ethnic, and payor sepsis and sepsis severe maternal comorbidity rates by 10 percent from baseline.

Slide used with permission from Sue Butts-Dion

References

- Centers for Disease Control and Prevention Pregnancy-Related Mortality Surveillance data from: Emily E. Petersen et al., "Vital Signs: Pregnancy-Related Deaths, United States, 2011–2015, and Strategies for Prevention, 13 States, 2013–2017," Morbidity and Mortality Weekly Report 68, no. 18 (May 10, 2019): 423–29.
- Emily E. Petersen et al., "Racial/Ethnic Disparities in Pregnancy-Related Deaths United States, 2007–2016," Morbidity and Mortality Weekly Report 68, no. 35 (Sept. 6, 2019): 762–65.
- Source: Eugene Declercq and Laurie Zephyrin, Maternal Mortality in the United States: A Primer (Commonwealth Fund, Dec. 2020)
- Greer O, Shah NM, Johnson MR. Maternal sepsis update: current management and controversies. The Obstetrician & Gynaecologist 2020;22:45–55.
- Escobar MF, Echavarría MP, Zambrano MA, Ramos I, Kusanovic JP. Maternal sepsis. Am J Obstet Gynecol MFM. 2020 Aug;2(3):100149. doi: 10.1016/j.ajogmf.2020.100149. Epub 2020 Jun 29. PMID: 33345880.
- Kvalvik SA, Zakariassen SB, Overrein S, Rasmussen S, Skrede S, Baghestan E. Obstetric infections and clinical characteristics of maternal sepsis: a hospital-based retrospective cohort study. Sci Rep. 2024 Mar 13;14(1):6067. doi: 10.1038/s41598-024-56486-4. PMID: 38480912; PMCID: PMC10937963.
- Lucas DN, Robinson PN, Nel MR. Sepsis in obstetrics and the role of the anaesthetist. Int J Obstet Anesth. 2012 Jan;21(1):56-67. doi: 10.1016/j.ijoa.2011.11.001. Epub 2011 Dec 12. PMID: 22168972.
- Cantwell R, Clutton-Brock T, Cooper G, Dawson A, Drife J, Garrod D, Harper A, et al. Saving Mothers' Lives: Reviewing maternal deaths to make motherhood safer: 2006-2008. The Eighth Report of the Confidential Enquiries into Maternal Deaths in the United Kingdom. BJOG. 2011 Mar;118 Suppl 1:1-203. doi: 10.1111/j.1471-0528.2010.02847.x. Erratum in: BJOG. 2015 Apr;122(5):e1. Erratum in: BJOG. 2015 Apr;122(5):e1.
- White SE, Heine RP, Widelock TM. Antibiotic Considerations in the Treatment of Maternal Sepsis. Antibiotics (Basel). 2025 Apr 7;14(4):387. doi: 10.3390/antibiotics14040387. PMID: 40298544; PMCID: PMC12024307.
- Jones, AE. Lactate Clearance for Assessing Response to Resuscitation in Severe Sepsis. Acad Emerg Med 2013 Aug; 20(8):844-847.
- Bauer ME, Housey M, Bauer ST, Behrmann S, Chau A, Clancy C, Clark EAS, Einav S, Langen E, Leffert L, Lin S, Madapu M, Maile MD, McQuaid-Hanson E, Priessnitz K, Sela HY, Shah A, Sobolewski P, Toledo P, Tsen LC, Bateman BT. Risk Factors, Etiologies, and Screening Tools for Sepsis in Pregnant Women: A Multicenter Case-Control Study. Anesth Analg. 2019 Dec;129(6):1613-1620.

References

- Society for Maternal-Fetal Medicine (SMFM); Shields AD, Plante LA, Pacheco LD, Louis JM; SMFM Publications Committee. Electronic address: pubs@smfm.org. Society for Maternal-Fetal Medicine Consult Series #67: Maternal sepsis. Am J Obstet Gynecol. 2023 Sep;229(3):B2-B19. doi: 10.1016/j.ajog.2023.05.019. Epub 2023 May 24. PMID: 37236495.
- Förger F, Villiger PM. Immunological adaptations in pregnancy that modulate rheumatoid arthritis disease activity. Nat Rev Rheumatol. 2020 Feb;16(2):113-122. doi: 10.1038/s41584-019-0351-2. Epub 2020 Jan 13. Erratum in: Nat Rev Rheumatol. 2020 Mar;16(3):184.
- Bauer ME, Fuller M, Kovacheva V, Elkhateb R, Azar K, Caldwell M, Chiem V, Foster M, Gibbs R, Hughes BL, Johnson R, Kottukapally N, Rosenstein MG, Cortes MS, Shields LE, Sudat S, Sutton CD, Toledo P, Traylor A, Wharton K, Main E. Performance Characteristics of Sepsis Screening Tools During Antepartum and Postpartum Admissions. Obstet Gynecol. 2024 Mar 1;143(3):336-345.
- Bauer et al. Maternal Deaths Due to Sepsis in the State of Michigan, 1999- 2006. Obstet and Gynecol. 2015
- Hensley et al. Incidence of Maternal Sepsis and Sepsis-Related Maternal Deaths in the United States. JAMA 2019
- Gibbs R, et al. Improving Diagnosis and Treatment of Maternal Sepsis: A Quality Improvement Toolkit. Stanford, CA: California Maternal Quality Care Collaborative.
- Shields A, de Assis V, Halscott T. Top 10 Pearls for the Recognition, Evaluation, and Management of Maternal Sepsis. Obstet Gynecol. 2021 Aug 1;138(2):289-304. doi: 10.1097/AOG.000000000004471. PMID: 34237760; PMCID: PMC8288480.
- Hensley MK, Bauer ME, Admon LK, Prescott HC. Incidence of maternal sepsis and sepsis-related maternal deaths in the United States. JAMA 2019; 322:890–92. doi: 10.1001/jama.2019.9818.
- Gymafi-Bannerman C, Thom EA, Blackwell SC et al. Antenatal Betamethasone for Women at Risk for Late Preterm Delivery. NEJM, 2016
- Behnia F, Omere CI, Clifford CC, Pacheco LD. Obstetric sepsis: Clinical pearls for diagnosis and management. Semin Perinatol. 2024 Nov;48(7):151975.
- Castrodad-Rodríguez CA, Orner EP, Szymczak WA. Educational Case: *Staphylococcus aureus* Bacteremia: Utilization of Rapid Diagnostics for Bloodstream Pathogen Identification and Prediction of Antimicrobial Susceptibility. Acad Pathol. 2021 May 12;8:23742895211015343.
- Draeger L, Fleischmann-Struzek C, Gehrke-Beck S, Heintze C, Thomas-Rueddel DO, Schmidt K. Barriers and facilitators to optimal sepsis care a systematized review of healthcare professionals' perspectives. BMC Health Serv Res. 2025 Apr 24;25(1):591

QUESTIONS?

